CHAPTER-4
Functions with fuzzy y-closed graphs and fuzzy ,-separations

axioms.
4.1. Introduction:

Literature servey has revealed that with the help of a certain operation ¥ on
topological space (X,T), Kasahara introduced the concept of y-closed graph  and
Jankovic investigated some properties of functions with y-closed graphs. Furthermore,
Ogata studied some new separation axioms y-7,, i =1,%,2. In this chapter, we define

and study the above concepts with the help of g-coincidence in a fuzzy setting.

In the section 2, we have defined fuzzy y-closed graphs, fuzzy y-subcontinuity

and then established their various properties.

In section 3, we have introduce and studied the concepts of fuzzy locally y-closed

function and particularly, fuzzy locally closed, fuzzy locally @-closed and fuzzy locally

0 -closed function. Then we have developed the notions of fuzzy y-closed (fuzzy almost
y-closed) functions and generalized the concepts of fuzzy closed (almost-closed), fuzzy

6-closed( fuzzy almost @-closed) and fuzzy o -closed (fuzzy almost o -closed) function.

Attempts are also made to obtain some properties of said types of functions with fuzzy -
closed graphs, fuzzy p-continuity and fuzzy py-compactness. Furthermore, using the
fuzzy y-open sets, some new separation axioms namely fuzzy y-T, spaces and some

1

topological properties on them are presented in last section of this chapter.
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4.2. Fuzzy y-closed graphs and its properties

Definition 4.2.1: Let ( X,T) and (Y,T’) be two fts and y an operation on T’. The graph
G(f) of function f:X —Y 1is said to be py-closed iff for each fuzzy point
(Px’i,Py’)e X XY —G(f), there exists open Q-nbds U and V of P/and P respectively
such that U xy(V)NG(f) =9

Examples 4.2.2 :

(i) If y is identity operation, then fuzzy y-closedness of a graph is identical with the
closedness of the graph.

(ii) y is closure operation, then the fuzzy y-closed graph G(f) is called fuzzy strong-
closed graphs.

Lemma 4.2.3: A graph G(f) of a function f : X — Y is fuzzy y-closed in X XY if and
only for each (PX’1 ,P7)e X XY —G(f), there exists open Q-nbds U and V of Pf and P/
such that ¥ (V)gf (U)

Theorem 4.2.4: Let f be mapping from fuzzy topological space (X,T) into another fts
(Y,T)and y an operation on T’. Then for the following statements (1) — (3), the
implications (1)=(2) and (2)=(3) hold. Furthr if y is regular then (1) ,(2) ,(3) are
equivalent to each other.

(1) f hasfuzzy y-closed graph

(2) If there exists a fuzzy filter base ® in X converging to P} e S(X) such that
f(®) fuzzy y-accumulates to pj € S(Y), then f(phH = Py
(3) If there exists a filter base @ in X converging to Px’1 € S(X) such that f(®) fuzzy

y-converges to p; € S(Y), then f(PX’i) =P .
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Proof: (1)=(2), If possible suppose f(P})#P/. Then (P} ,P/)e(XXY)-G(f).
Since G(f) is fuzzy y-closed graph, there exists open Q-neighbourhood U and V of Pf
and P respectively such that y(V)gf (U) . Also ® — Ple S(X), so F cU for some
Fe ® and then we have f(F)c f(U). Moreover, f(®) fuzzy py-accumulates to
P e S(Y), therefore we have y (V )gf (F) . Thusy(V )qf (U) , a contradiction.

(2) = (3) Let there exists a filter base ®in X converging to Px’1 € S(X) such that f(®d)
fuzzy y-converges to P € S(Y). Then f(®) fuzzy y-accumulates to P, . Thus, there
exists a filter base ®in X converging to Pf such that f(®) fuzzy y-accumulates to P .
Therefore by assumption f(P})= P

Assume now that ¥ is regular. It suffices to show that (3) = (1) . Suppose that (1) does
not hold. Then there exists a (Px’l, P),’ )e (X XY)—G(f) suchthat (V)gqf (U) for every
open Q-neighbourhood U and V of Px’1 and P;. Consider & ={U NF' V). If A,
A,e ® thenfor U,,U,e N%(p?) and V,,V, € NQ(p;), then

ANA =U,NU)HNG VYN L GV)) =U N F V)N #(V,)). Since 7 is
regular, we have A, N A, 2 U, N £~ (1(V,)) = A, (say). Thus @ is fuzzy filterbase.
Obiviously @ converges to pf and f(®) y-converges p;.Thenby (3) f( pf )=Dy,

which is absurd.
Definition 4.2.5: Let (X,T), (Y,T") be topological spaces, and ¥ be an operation on 7~
A mapping f: X — Yis said to be fuzzy y —subcontinuous if for every convergent filter

base @ in X, the filter base f(®P) fuzzy y-accumulates to some fuzzy point of Y.
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Theorem 4.2.6: A function f:X — Yis fuzzy y -continuous at P’ iff for every filter
base @ in X converging to Pf , the filter base f(®) fuzzy y-convergesto f (Px’1 ).
Proof: Let the function f:X — Ybe fuzzy y-continuous and & be any fuzzy filter
base converging to Px’1 € S(X). Then for each open Q-nbd V of f( pf)e S(Y), there
exists an open Q-nbd U of Pf such that f(U) c (V). Since ® is fizzy y-converging
to Px’1 , there exists Fe @ such that F c U . This implies f(F) < f(U). Therefore
f(F)YcyV). Also  we  have Pf € CI(A)for every Aec ® and  so
f(Pl)e f(CI(A) c CI(f(A) < CL(f(A)). Thus f(P})e CL,(f(A)). Hence f(P)
fuzzy y-converges to f (Pj). Conversely, let Pf e S(X) and Ve NO(f (le )).Since
d=N Q(PX’1 )—> Px’l, and f(®) fuzzy y-converges to f (Px’1 ) and so there exists
F e @ suchthat f(F)c (V). Hence fis fuzzy y -continuous.

Theorem 4.2.7: Fuzzy y-continuous mapping is fuzzy ¥ -subcontinuous.

Proof: Let ® be a fuzzy filterbase in X converging to p? e S(X). Then by theorem 4.2.6
fuzzy filterbase f(P) converges to p; € S(Y). By theorem 3.5.4, f(®P) y-accumulates
to p’. Consequently f isfuzzy y -subcontinuous

Theorem 4.2.8: Let (X,T), (Y,T’) be topological spaces, and ¥ an operation on T If

f:X —>Yis fuzzy y—subcontinuous with fuzzy y-closed graph, then fis fuzzy

y -continuous.

Proof: Suppose f 1is not fuzzy y-continuous. Then there exists a Px’1 € S(X) and filter
base ® in X converging to le such that f(®) does not fuzzy y-converge to f (PX‘)
and so there exists an open Q-neighbourhood V of f (Px’l) such that f(F)c (V)¢

which implies f ' (f(F) < £ (7(V))€).But we have F < f ' (f(F)).
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Therefore F < ' (y(V))). Let ¥ ={FNf ' (»(V))°): Fe ®. Then clearly ¥ is
filter base in X. Also & is contained in the filter W generated by W', and so ¥
converges to le. Since f is fuzzy y-subcontinuous, the filter base f(W¥) fuzzy y-
converges to some Py’ € S(Y). Hence by theorem 4.2.4 (3), we have f (Pf )= Py’ , which
is absurd. Hence f is fuzzy y -continuous.

Theorem 4.2.9: If (Y,T') is fuzzy y-compact space for some operation ¥ on T, then
every mapping f from fts (X,T) into (Y,T”) is fuzzy y-subcontinuous.

Proof: Let @ be a convergent fuzzy filter base in X. Then by theorem 3.5.11 the fuzzy

filter base f(®) fuzzy y-accumulates to some fuzzy point of Y . Thus f is fuzzy

¥ -subcontinuous.

Theorem 4.2.10: Let f be a mapping from fts (X,T) into fts (¥,7") and y an
operation on 7. If (Y,T’) is fuzzy y-compact and f has fuzzy y-closed graph, then f
is fuzzy y-continuous.

Proof: By theorem 4.2.9 f is fuzzy y-subcontinuous, and hence it is fuzzy

¥ -continuous by theorem 4.2.8

4.3. Some closed and open functions in fuzzy topological spaces.
Definition 4.3.1: Let (X,7T), (Y,T’) be fts and y an operation on T '. A mapping
f:(X,T)— (Y,T) is called fuzzy locally y-closed if for each open Q-neighbourhood
U of fuzzy point p f € S(X), there is a open Q-neighbourhood V of p f such that V c U
and f(V)is fuzzy y-closedinY.

Example 4.3.2:

(1) If y is identity operation then fuzzy locally ¥ -closed mapping is called fuzzy locally

closed mapping
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(2) If y is closure operation then fuzzy locally y-closed mapping is called fuzzy locally

8- closed mapping.

(3) If y is interior-closure operation then fuzzy locally y-closed mapping is called fuzzy

locally O - closed mapping.

Definition 4.3.3: Let » be an operation on 7’. A mapping f :(X,T) — (Y,T) is called
(1) fuzzy y-closedif f(A)is y-closed setin Y for each fuzzy closed set A in X.

(2) fuzzy y-open if f(A)is y-opensetin Y for each fuzzy opn set A in X

Examples 4.3.4: (1) If y is identity operation then fuzzy y-closed (¥ -open) mapping is

coincides with fuzzy closed (fuzzy open) [21]

(2) If y is closure operation then fuzzy y-closed (¥ -open) mapping is called fuzzy

@ -closed (fuzzy €-open) [20]

(3) If y is interior-closure operation then fuzzy y-closed (y-open) mapping is called

fuzzy 0 - closed (J -open)

Definition 4.3.5: Let y be an operation on 7~. A mapping f :(X,T)— (Y,T") is called
fuzzy almost y-closed if f(A)is y-closed setin Y for each fuzzy regularly-closed set A

in X

Example 4.3.6: (1) If y is identity operation then fuzzy ¥ -closed mapping is coincides

with fuzzy almost closed mapping

(2) If y is closure operation then fuzzy almost y-closed mapping is called fuzzy almost

6-closed mapping.

(3) If ¥ is interior-closure operation then fuzzy almost ¥ -closed mapping is called fuzzy

almost J - closed mapping.
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Remark 4.3.7: If a function f:(X,T)— (Y,T’) is fuzzy y-closed, then it is fuzzy
almost ¥ -closed function.

Proof: Let A be a fuzzy regular closed set X. Then A is fuzzy closed subset of X and

hence by assumption f(A)is fuzzy y-closed set of Y. This shows that f is almost y-

closed function.

Remark 4.3.8: If a function f:(X,T)— (Y,T") is fuzzy almost y-closed function
where (X,T) is fuzzy regular space and y is an operation on T, then it is fuzzy locally
7 -closed function.

Lemma 4.3.9: Let (X,T) and (Y,T") be fts and y an operation on T . If a function
f:(X,T)— (Y,T") is fuzzy locally y-closed and has closed point inverses, then f has a
fuzzy y-closed graph.

Proof: Let (pf,p;)e X XY —G(f). Then p’e f"l(p;) and since f‘l(p;) is fuzzy
closed, there exists an open Q-neighbourhood U of p f such that Ugf ~'( p,) . The fuzzy
locally y-closedness of f implies that there is an open Q-neighbourhood V of p? such
that V c U and f(V)is fuzzy y-closedin Y. Since f(p’)gf (V) and f(pf) # p,,, then
pyqf (V). This means pj & f(V).Then there exists an open Q-neighbourhood W of p|
such that f(V)gy(W) and hence, by Lemma 4.2.3 it follows that f has a fuzzy
y-closed graphs.

Lemma 4.3.10: Let (X,T) and (Y,T") be fts and ¥ an operation on 7~. If a function
f:(X,T)— (Y,T) is fuzzy almost y-closed with fuzzy - closed point inverses, then
f has a fuzzy y-closed graphs.

Proof: Let (pf,p)’,)e X XY —-G(f). Then pf 3 fﬁl(p;) and since f’l(p;) is fuzzy

fuzzy @-closed, there exists an open Q-neighbourhood U of p? such that
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Cl(U)gf '( p;) . Since CI(U) is fuzzy regularly-closed, the fuzzy almost y -closedness of
f implies that f(CI(U))is fuzzy p-closed in Y. Since f(p;1 )gf (CI(U)) and
f(pf) # p,.then p qf(cl(U)). This means p; & f(CI(U)).Then there exists an open

Q-neighbourhood W of p{ such that f(CLU))gyW). Since U < CI(U) implies
fWU)c f(CIU)) , it follows that f(U)qy(W) and hence, by Lemma 4.2.3 it follows
that f has a fuzzy y-closed graph.

Theorem 4.3.11: Let (X,T) and (Y,T”) be fts and y be an operation on 7”. If a function
f:(X,T)— (Y,T) is fuzzy almost y-closed with fuzzy closed point inverses and X is a
fuzzy regular space, then f has a fuzzy y-closed graphs.

Proof: Since fuzzy 6-closure and closure coincide for subsets of a fuzzy regular space, it

follows from above Lemma 4.3.10.

Theorem 4.3.12: Let (X,T) and (Y,T’) be fts and ¥ be an operation on T’. If a
function f:(X,T)— (Y,T") is fuzzy almost y-closed function with fuzzy @- closed
point inverses and (Y,T”) is fuzzy y-compact, then f is fuzzy y-continuous.

Proof: It follows from Lemma 4.3.10 and theorem 4.2.10.

Theorem 4.3.13: Let (X,T) and (Y,T’) be fts and y be an operation on 7’. If a
function f:(X,T)— (Y,T’) is fuzzy locally y-closed function with fuzzy closed point
inverses and (Y,T”) is fuzzy y-compact, then f is fuzzy y-continuous.

Proof: It follows from Lemma 4.3.9 and theorem 4.2.10.

Theorem 4.3.14: If f is a fuzzy almost y-closed function from a fuzzy regular space

(X,T) into a fuzzy y-compact space (Y,T’) such that f~'( p,) is fuzzy closed for every

p, € S(Y) then f isfuzzy y-continuous .
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Proof: Since fuzzy 6-closure and closure coincide for subsets of a fuzzy regular space, it

follows from Lemma 4.3.10 that f has a fuzzy y-closed graph. Since (Y,T")is fuzzy

y -compact, then by theorem 4.2.10 f is fuzzy y-continuous.

Theorem 4.3.15: Let (X,7) and (Y,T") be fts and y an operation on T’. If a function
f:(X,T)— (Y,T) is fuzzy almost open function with fuzzy closed graph, then f has a
fuzzy strongly-closed graph.

Proof: Let ( pf ,Py)€ X XY —G(f). Since f has a fuzzy closed graphs, there exists an
open Q-neighbourhoods U and V of p’and p, such that f(U)gV . This implies
Ugf ™' (V) and UgCI(f~'(V)). Since fis fuzzy almost open , Ugf ' (CI(V)). Hence
f(WU)qCL(V).So fhasafuzzy strongly-closed graph.

Theorem 4.3.16: Let (X,T) and (Y,T”) be fts and y be an operation on 7. If a function
f:(X,T)— (Y,T) is fuzzy almost-open, almost-closed function with fuzzy &-closed
point inverses, then f has a fuzzy strongly-closed graphs.

Proof: 1t follows from Lemma 4.3.10 (when y is identity operation) and theorem 4.3.15
Lemma 4.3.17: If a function f:(X,T)— (Y,T") is fuzzy almost y-closed injection
function where (X,T) is fuzzy Hausdorff and y is an operation on T, then f has a
fuzzy y-closed graph.

Proof: Since (X,T) is fuzzy Hausdorff, its fuzzy points are fuzzy €-closed and hence
f has fuzzy @-closed point inverse. Now by lemma 4.3.10, it follows that f has a fuzzy

y -closed graph.
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Theorem 4.3.18: Let f be a fuzzy almost y-closed injection function from a fuzzy
Hausdorf space (X,T) into a fuzzy y-compact space (Y,T”) and y be an operation on
T’, then f is fuzzy y-continuous.

Proof: It follows from the Lemma 4.3.17 and Theorem 4.2.10.

Lemma 4.3.19: If a function f:(X,T)— (Y,T") is fuzzy almost- open function with
closed graph, then f has a fuzzy strongly-closed graph.

Proof: Let ( pj, py)€ X XY —G(f). Since f has a fuzzy closed graph, there exists an
open Q-neighbourhoods U and V of pf and p; such that f(U)qV . This implies that

Ugf ' (V). Therefore UgCIl(f~'(V)). Since fis fuzzy almost open function,

Ugf ' (CI(V)) .Hence f(U)gCl(V).So fisfuzzy strongly-closed graph

4.4. Fuzzy y-separation Axoioms:

Definition 4.3.1: A fts (X,T) is called:

(1) Fuzzy y-T, iff for any pf , pf, e S(X) and pf * pf, , there exists open
Q-neighbourhoods U and V of p f and p’y‘ respectively such that pi qyWU) and
pigy(v)

(2) Fuzzy y-T, iff for any p f , pf e S(X) and p f # pf, , there exists open
Q-neighbourhoods U and V of pf and p’y‘ respectively such that ¥ (U )gy (V) .
Theorem 4.3.2: If a space (X,T)is fuzzy y-T,, thenitis fuzzy y-T,.

Proof: Let (X,T) be a fuzzy y-T, space. Let pf , pf,e S(X) and pf #* pf,then there

exists open Q-neighbourhoods U and V of pf and pf, respectively such that
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YU )gy(V) . Since pfq}/(U) and pf,q;/(V) ,therefore pfc_]}/(V) and p’y‘c_”/(U). Hence
(X,T)is y-T,.
Theorem 4.3.3: A space (X,T) is fuzzy y-T7, if and only any fuzzy singleton in X is a

fuzzy y-closed set.

Proof: (Necessity): Let (X,T) be a fuzzy y-T, and p’e S(X). Since p? cly(pf), SO
it is only need to prove ¢/, ( pj ) pf Let pf, 3 pf .Then pf * pi and by assumption,
there exists an open Q-neighbourhood V of pf, respectively such that pﬁc?y(U ) . This
implies pf, 3 cly(pf). Thus cly(pf) c p’and hence cly(pf) = p’. This shows that p?
is y-closed set.

(sufficiency): Let p?, pf, e€S(X) and pl # p’f Since p?and pf, are both y-closed set,
cly(pf) = pfand cly(p’y‘)= p’f Since pf * p’y‘, then p’y‘ 3 cly(pf)and pf ¢ cly(pf,).
Therefore, there exists open Q-neighbourhoods U and V of p?and pf, respectively such
that pfc_]}/(V) and pf,c_”/(U). This implies (X,7T) is fuzzy y-T, space.

Theorem 4.3.4: Suppose y:T — I* is regular operation. If (X ,T,) is a fuzzy T, space
then (X,T)is a fuzzy y-T,.

Proof: p’, pf, e€S(X) and pl # p’f Since (X,T,) is a fuzzy T, space, then there exists
open Q-neighbourhoods U, V (e T,cT)of p f and pf, respectively such that
yW)qy(V).Thus (X,T)is afuzzy y-T,.

Definition 4.3.5: Let (X,T) be afts and y an operation on T . A fuzzy set Ae I” is

called y-generalized closed (¥ -g-closed, for short) if c/,(A) cU whenever Ac U and

U is fuzzy y-open in (X,T).
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Theorem 4.3.6: Every fuzzy y-closed set is fuzzy y-g-closed.

Proof: Obvious. The converse is not true as shown by the following example.

Example 4.3.7: Let X = {xy} and T={X,d, p)’}. Define y:T—I* by
yU)=cl(U) foreach UeT.

Let A=p> U p?jé. Then A is fuzzy y-g-closed set but not fuzzy y-closed set.
Definition 4.3.8: A space (X,T) is called a fuzzy y—T% space if every fuzzy y-g.closed
set of (X,T) is fuzzy y-closed.

We conclude this chapter with following teorem on ¥ — T% space

Theorem 4.3.9: For each pf e S(X), pf is y-closed or ( pf )€ is fuzzy y-g.closed set in
(X,T).

Proof: Suppose p? isnot y-closed. Then (p/)€ is fuzzy y-open. Let U be any fuzzy
y-open set such that (p f )cU. Since U=X is the only fuzzy %-open,

cl, ((p})°) c U Therefore (p?)€ is fuzzy y-g.closed set.
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