CHAPTER 3:
y-operations and its related topoics in Fuzzy topological spaces

3.1 Introduction:

It is known that S. Kasahara [51] introduced the notions of % -continuous
mapping, y-compact and ¥ - closed graphs by introducing an operation ¥ on a topology.
After kasahara, D.S. Jankovic [4] defined the concept of y- closure, y-closed (open)
functions and studied some properties of functions with y-closed graphs. Then H. Ogata
[5] defined the notion y-open sets and used it to investigate some new separation axioms
v-T, =0, 1/2, 1. Moreover Ogata introduced different (y, #) -function and established
some properties of this notions. In 1992, F. U. Rehman and B. Ahmad [4, 91] defined and
investigated several properties of y-interior, y-exterior, y-closure and y-boundary points in
Topological Spaces and studied the characterizations of (y, )-continuous mappings.
Thereafter B. Ahmad and S. Hussain continued studing different topological concepts and
properties relate to ¥ -operations on topological space. So far, no attempt has been made
to relate the above concepts to fuzzy topological spaces. In first section, we introduce and
study the concepts of an operation ¥ on a fuzzy topology T on a set X. Then we develop
the notions of fuzzy y-open and investigate some properties of these notions. We show
that under a certain condition, the family of all of fuzzy y-open sets forms a fuzzy
topology on X.

In next section, we define two different fuzzy y-closure and discuss the relation
between them. Moreover we show that they are equivalent under some suitable
conditions.

The notions of ¥ -continuous and its some properties are introduced and studied in

section 4. Moreover we obtain some basic properties of these concepts.
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In the last section we develop the concepts of fuzzy py-compactness. Fuzzy

filterbases are then used to characterize this concept. Also some expected basic properties

y-compactness are explored. Two papers on results of this chapter are published in
journal of fuzzy Mathematics [26, 27].

3.2. Fuzzy y -operations and Fuzzy y-open set:

Definition 3.2.1: Let (X, T) be a fuzzy topological space. An operation Yy on T is a
mapping from T into ¥ such that U < Y(U) for every Ue T. The Mapping y:T — I*

defined by

(1) y(U) = U for every U € T is an operation on T and this is called identity operation;

(2) y(U) = CI(U) for every U € T is an operation on T and this is called closure operation;
(3) Y(U) = Int(CI(U) for every U €T is an operation on T and this is called interior-closure

operation

Definition 3.2.2: Let (X, T) be a fts. A fuzzy subset A of X will be called a fuzzy

y -open iff Vp’gA, there exists an open Q -neighborhood U of p? such that y(U) c A.
T, denotes the set of all fuzzy y -open sets.

Definition 3.2.3: Let X ={x, y}and A, B, C € I* defined by
A=0.6,Bx) =06, B(y)=0.7,C=0.3,

Where @ denotes the constant mapping with value . Let T = {X ,J A, B,C}
Then (X,T) is a fts. Define y:T—=I* by »X)=X,7y(@) =

7(A) = A,y(B) = B,y(C) =0.5. Then we can easily see that T, ={X,J, A, B} . Thus X,

D, A, B are fuzzy y-open but C is not fuzzy y-open set.

Remark 3.2.4: Ty cT.

Proof: Let AeT, and plgA . Then there exists an open Q -neighborhood U of p? such

that y(U) c A .By definition of ¥, we have U < y(U) < A which implies that A is open.
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Definition 3.2.5: Let (X,T)be a fts and y be an operation on T and p f € S(X).The
y-interior of a fuzzy set Ae I* is denoted by Int,(A) and defined as quinty(A) if
there exists an open Q-neighbourhood U of p? such that y(U) c A.

Theorem 3.2.6: Let (X,T)be a fts and ¥ be an operation on T. Then for Ae I,

(1) Int,(A)c A

(2) Int,(A) is a fuzzy open set.

(3) A isfuzzy y-openiff Int,(A)=A

Proof: (1) Let pj gint,(A). Then there exists an open Q-neighbourhood U of p? such
that ¥(U) < A .By definition of ¥, we have U < y(U) < A. Since pqu , we have pqu
Thus p{gint,(A) = p’gA. This means Int,(A) C A.

(2) It is obvious

(3) Let A be fuzzy y-open and p’gA. Then there exists an open Q-neighbourhood U of
pf such that y(U) < A .This shows that pfqinty(A). Thus pqu = pfqinty(A). Hence
A c Int ,(A) Since by (1), Int,(A) € A we get Int,(A)=A.

Conversely let Inz,(A) = A. We want to prove that A is fuzzy y-open.

Letp f gA = Int,(A). Then there exists an open Q-neighbourhood U of pf such that
y(U) < A .Consequently A is fuzzy y-open.

Definition 3.2.7: An operation Yy on fuzzy topology T is said to be fuzzy regular if for

every open Q-neighborhoods U and V of each p’, there exists an open Q-neighborhood

W of p? such that yYW) < (U) NyV).
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Example 3.2.8:

(1) Inthe Example 3.2.3, the operation ¥ is regular.

(2) Let X = {x, y} and consider the following fuzzy topology,

T={x,2}U{p} : A2.51U{p? Up?:12>.5).

Let y:T —I* be defined by y(U)=X if U=p’ and yU)=U if U % p’.

Then y is not regular operation on T. Indeed, for p?,41>0.5, we have
Py (pUpye Ne(pl) and  y(p)Ny(py°Upy)=p®, but there is no

Ue N°(p}) suchthat yU) < y(py")Ny(py* Upy?)

Definition 3.2.9: A fuzzy operation y on T is said to be fuzzy open if for every open Q-
neighborhood U of p f , there exists a fuzzy y-open set A such that pf gAand A < y(U).
Theorem 3.2.10: Let A be a fuzzy subset of (X,T). If A is a fuzzy y-open set then A is
open.

Proof: Since T, c T, the result follows immediately.

Theorem 3.2.11: If A; is fuzzy y-open set for every je J then U {A; | jeJ} is fuzzy
Y-open.

Proof: LetB= U {Aj|je J} and p’qB. Then there exists some A; € T such that
p f q A;. Since A;is fuzzy y-open set, so there exists an open Q-neighbourhood W of pf
such that W) < A; and so. y(W)cB. Thus B is fuzzy v-open.
Theorem 3.2.12: Let ybe a fuzzy regular operation on T.

(i). If A and B are fuzzy y-open set then A (] B is y-open set.

(ii). T, is fuzzy topology on X.
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Proof: (i) Let pf q (A N B). Then pf q A and pf q B. Since A and B are fuzzy y-open
sets, there exists open Q-neighborhoods U, V of pf such that y(U) < A and y(V) < B.
Again since 7 is fuzzy regular operation, there exists an open Q-neighborhood W of p f
such that y(W) <y(U)Ny(V). Then we have yW)(x) < min{y(U)Xx), 7(V)(x)}.
Consequently Y(W)(x) < min{A(x), B(x)}.Thus we get yYW) < A (1 B which shows
that A () B is fuzzy y-open set.

(i) X and & are fuzzy y-open sets together with (i) and theorem 3.2.11 that T, is fuzzy
topology on X.

Definition 3.2.13: A fuzzy topological (X,T) is called fuzzy y-regular space if for each
fuzzy point p’ e S(X) and every open Q-neighborhood V of p?, there exists an open Q-
neighborhood W of p f such that Y(W) < V.

Examples 3.2.14:

(1) For closure operation ¥, fuzzy y-regular space coincides with fuzzy regular [64]

(2) For Interior-closure operation ¥, fuzzy y-regular space coincides with fuzzy semi-
regular [64]

(3) For closure operation ¥, fuzzy y-regular space coincides with fuzzy almost-regular. [64]
Theorem 3.2.15: (X,T) is fuzzy y-regular space if and only if 7 =T,

Proof: (Necessity): It suffices to prove that T < T, Let A be a fuzzy open set and

pf q A. Then A(x) > 1-A for some xe X .and this shows that A is open g-neighborhood
of pf. Since (X,T) is fuzzy y-regular space, there exists an open g-neighborhood W of

p f such that y(W) c A and hence A is fuzzy <y-open set.
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(Sufficiency): Let p f be a fuzzy point and V be an open g-neighborhood of p f . Since

A

X

T=T,,V is fuzzy y-open set. Therefore there is an open g-neighborhood W of p? such

that y(W) < V. This shows that (X,T) is a fuzzy y-regular space.

Example 3.2.16: Let X ={x, y}and A, B, C, D € I* defined by

Ax) =04,A(y)=0.3,B (x) =0.6, B(y) =0.7,

Let T={X ,JA,B,} Then (X,T) is fts. Define y:T — I* by y(X)=X,y(D) = O,
y(A)=0.4, yB)=B.

Clearly (X,T) is nota y-regular spaces. Moreover T, ={X,J, B}

Example 3.2.17: Let X ={x,y}and A,B,C,D € I* defined by

Ax)=05, B(x)=05 Cx)=04, D=04

A(y)=0.6, B(y)=04, Cy)=06

where a denotes the constant mapping with value «.Let T ={X ,9,A,B,C,E} . Then
(X,T) is fts. Define y:T —1* by »(X)=X,y(D) = &, pA=0.7,yB)=8B,
y(C)=C,y(D)=D Clearly (X,T)is y-regular space and T, ={X,9,A,B,C,D}
3.3 Fuzzy y-closures and its properties:

In this section we introduce two different types of y-closure - T, -CI(A) and Cl(A)

containing a fuzzy set A of (X,T) and investigate relation between them.
Definition 3.3.1: A fuzzy subset A of (X,T) is said to be fuzzy 7y-closed set if its
complement A® is fuzzy y-open.

Definition 3.3.2: For a fuzzy subset A of (X,T) and T,, we define T, -CI(A) as follows

T,-Cl(A) = inf { F: Ac F,Fe T,}
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Theorem 3.3.3: For a fuzzy point p? in X, p? € T,-CI(A) if and only if

V qA forany Ve T, such that pf qV.
Proof: We have p’e T ,-CI(A) if and only if for every fuzzy y-closed set
FoAp f €F or F(x) > A. By taking complement, this fact can be stated as follows:
4 f € T,-ClI(A)if and only if for every fuzzy y-open set V C A°,V(x) < 1-A.
In other words, p f € T,-CI(A) if and only if for every fuzzy y-open set V satisfying
V(x) > 1-A , V is not contained A°. Therefore p*e T,-CI(A) if and only if for every
fuzzy y-open set V satisfying V(x) > 1-A and V is quasi-coincident with A. Thus we have

proved that p’e T ,-CI(A) if and only if V q A for every fuzzy y-open set V such that

piqV.
Theorem 3.3.4 Let A and B be fuzzy subsets of (X,7).

i. A'is y-closed if and only 7, -CI(A) = A.
ii. A c T,-Cl(A).

iii. If Ac Bthen 7,-Cl(A) c T,-CI(B)
iv. T,-CI(A) is fuzzy y-closed set .

Proof: (i) (Necessity): Let A be fuzzy y-closed set, then by definition 3.3.2. T, -CI(A) = A.
(Sufficiency): Let T, -CI(A) = A. Then we want prove that A is fuzzy y-open set. Let
plq A°. This means p’e¢ A= T,-CI(A). Then there exists a fuzzy y-open set V and
p f q V such that V is not quasi-concident with A and so V C A°®. Since V is fuzzy y-open,
so for p?q V, there exists an open Q-neighbourhood W and such that yW) < V. Hence
Y(W) < A° that shows A€ is fuzzy y-open set. Consequently A is fuzzy y-closed set.
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(i1) It is obvious.

(iii) Let p’e T,-CI(A) . Let V be fuzzy y-open set and p f q V. Then we have V q A.
Since Ac B, so V q B. This shows pf € T,-CI(B). Thus T,-Cl(A) c T,-CI(B)

(iv) Here we want to prove that T, - CI(T, - CI(A))=T,-CI(A)) . Let G =T, - CI(T,, - cl(A))
and H = T, - CI(A)) .Let ple T,-CIU(T,-Cl(A))and V be fuzzy y-open set and plq V.
Then we have V q H which implies V(y) +H(y) > 1 for some ye X .. Let H(y) =1,

re [0,1]. Then p; € H =T, -cl(A))and V is fuzzy y-open set and p; q V. Hence by
theorem 3.3.3 we get V q A. This shows that pf € T,-CI(A)). Again, let

p f €T, -CI(A). Then by (ii), p f €T,- Cl(Ty -CI(A)) Thus we have shown that
pieT,-Cl(T,-Cl(A))& pleT,-Cl(A). Hence T,-CI(T,-CI(A)= T,-CI(A) and by
(i) T,-CI(A) is fuzzy y-closed set.

Now we introduce the following definition of Cly(A).

Definition 3.3.5: A fuzzy point p’ e S(X) is in the fuzzy y-closure of fuzzy set A of X

i.e.in Cly(A) if (V) q A for each open Q-neighborhood V of p f .

Theorem 3.3.6: For a fuzzy subset A of (X,T) the following properties hold.

(i) A c Cl(A) c Cl,(A) cT,-Cl(A)

(i) If (X,T) is fuzzy y-regular space then CI(A) = CI,(A) = T, -CI(A)

(iii) CL,(A) is fuzzy closed subset of (X,T).

Proof: (i) Let p f € CI(A). Let V be an open Q-neighborhood of p f . Then V q A and by
the definition of Y, we get Y(V) q A. This shows that p f € Cl(A). Therefore

CI(A) cCL(A).
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Againlet ple T, -CI(A). Then there exists a fuzzy y-open set V such that plqVandV

is not quasi-concident with A. Then we have V(x) + A(x) < 1 for all xe X. But V is fuzzy

Y-open set, so there exists an open Q-neighbourhood W of p? such that yW) < V. Then
(W) is not quasi-concident with A. Since W is open g-neighborhood of pf , then by
definition ,we have pf ¢ Cly(A).Hence Cl(A) < T,-Cl(A).Thus we have
Ac Cl(A) c Cl,(A)cT,-Cl(A)

(i) By theorem 3.2.15, we have T =T,and hence CI(A) = T,-CI(A). By using (i) it is
shown that CI(A) = Cl(A) = T, -CI(A)

(iii) Here we want to prove that CI(Cl(A)) = CI(A). Let p f € CI(Cl(A)) and V be an
open Q-neighborhood of p*.Then we have V q Cl,(A) which implies V(y) + Cl(A)(y) >1
for some ye X .Let CI,(A)(y) =r,1e[0,1]. Then pie CI (A)and V is a fuzzy open Q-
neighborhood of p{. By definition, we get ¥(V) q A. This shows pf € Cl,(A). Again
for p f € CI(A). Then by (i) we have p f € Cl,(A).Thus we have shown that

pie CL(A) ple CI(A). Hence CI(CL,(A))= CL(A).

Theorem 3.3.7: Let A be a fuzzy subset of (X,T).
i A'is fuzzy y-closed if and only if Cly(A) = A.

ii.  T,-CI(A)=A if and only if Cl(A) =A.

iii. A'is fuzzy y-open if and only if Cl,(A®) = A°

iv.  T,-CI(Cl{(A)) = T,-CI(A) = C(T, -CI(A))

v.  If Ac Bthen Cl(A) c Cl(B).
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Proof: (i) (Necessity): we prove that Cl(A) < A.Let p*¢A. Then p/qA°. Since A° is
fuzzy y-open, there exists an open Q-neighbourhood V of pf such that (V) < A° which
implies that y(V) is not quasi-concident with A. Since V is open Q-neighborhood of p f , it
shows that p f ¢ Cl(A). Hence Cl(A) c A. Again by theorem 3.3.6, we have

A < Cl(A). Thus Cl(A) = A.

(Sufficiency): We want to prove that A° is fuzzy y-open set. Let pf q A°. This means
ple A = Cl(A). Then there exists a fuzzy open Q-neighborhood V of p?such that

Y(V)gA . Therefore (V) < A° sothat A° is fuzzy y-open set and hence A is fuzzy

v-closed set.
(ii) follows from (i) and theorem 3.3.4 (i).
(iii) follows from (i) and definition 3.3..1.

(iv) By the theorem 3.3.4 (iv), we have T, -CI(A) is fuzzy y-closed subset of X. Then by
(1) we get T, -CI(A) = CI(T, -CI(A)). Again by theorem 3.3.6(i), we have

A c CI(A) c Cl(A) < T, -CI(A). Also by thorem 3.3.4 (ii1) we get

T,-Cl(A) < T,-CI(Cl(A)). Hence we can obtain Cl(A) T,-Cl(A) < T,-CI(Cl(A)). By

using these inclusions and theorem 3.3.4 (iii), we can find

T,-Cl(Cl(A) cT,-CT,-Cl(A)) < T,-CI(T,-CI(Cl(A))). Since T,-CI(A) is fuzzy
Y-closed, so we get T,-Cl (Cl(A)) c (T,-Cl(A)) < T,-CI(CL(A)). Thus

T,-Cl(A) =T,-Cl (Cl(A)) and hence T,-CI (Cl(A)) = T,-CI(A) = CI(T, -CI(A))

(v) Let p f € Cly(A). Let V be fuzzy open Q-neighborhood of p f . Then we have

Y(V) q A. Since Ac B so we get ¥(V) qB and so pf € Cly(B). Thus Cl(A) < Cl(B).
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Theorem 3.3.8: If vis fuzzy open operation and A is fuzzy subset of X then

i Cl,(A) = T,-CI(A).

ii. Cl,(Cl,(A)) = Cl,(A)ie. Cl, (A) is y-closed subset of (X,T).
Proof: (i) Suppose p’¢ Cl(A). Then there exists a fuzzy open g-neighborhood V of pl
such that (V) gA . Since v is fuzzy open operation, there exists a fuzzy y-open set W and
p f q W such that W < Y(V). Therefore W gA and so pf ¢ T,-Cl(A).
Hence T,-Cl(A) < Cl(A).Again by theorem 3.3.6(i) we have Cl(A) < T,-CI(A).
Therefore Cl(A) = T, -CI(A).
(i1) By (i) and theorem 3.3.4 (iv) we have
CL(Cl(A)) = T, -CI(CI(A)) = T, -CI(T, -Cl(A))= T, -CI(A) = Cl(A).
3.4. Fuzzy y-Continuous Mapping:

In this section fuzzy p-continuity is introduced and studied in the light of the

notions of g-coincidence and fuzzy points which generalize the some types of continuity

functions as in [21, 38, 64]
Definition 3.4.1: A fuzzy point pf is called a fuzzy y-cluster point of a fuzzy set A iff
v(U) q A for every open Q-neighbouhood U of p f . cl,(A) is union of all y-cluster points

of A.
Examples 3.4.2:
(1) Ifyis closure operation then the y-cluster point coincides with the 6-cluster point

(2) Ifyis interior-closure operation then the y-cluster point implies J -cluster point
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Definition 3.4.3: Let (X,T) and (Y,T”) be fuzzy topological spaces, and

vy be a fuzzy operation on T”. A mapping f of X into Y is said to be fuzzy y-continuous if
for each fuzzy point p f in X and for each open Q-neighbourhood V of f (p f) inY,
there exists an open Q-nighbourhood. U of p f such that f(U) < y(V) .

Examples3.4.4:

(1) If y is the identity operation on T’, then the y-continuity coincides with the fuzzy
continuity.[21,83]

(2) If v is the closure operation on 7’, then the y-continuity coincides with the fuzzy
weakly 0-continuous. [64]

(3) If y is the interior-closure operation, then the y-continuity coincides with the fuzzy
almost continuity [38]

Theorem 3.4.5: Following properties (i), (ii), (iii), (iv) and (v) of a fuzzy mapping
f (X, T)— (Y,T) satisfy the implication rules (i) = (i) = (iii) = (iv) = (v)

(i) f:(X.,T)— (Y,T’) is fuzzy y-continuous mapping.

(ii) f(cl(A)) ccl,(f(A)))) forevery Ae I*

(ii) cI(f(B)) < (cL,(B)) forevery Be I"

(iv) for every fuzzy y-closed set B of Y, f~'(B) is closed set in X.

(v) for every y-open set B of Y, f~'(B) is open setin X .

Proof: (i) = (ii). Let pf € cl(A). Let V be any open Q-nbd. of f( pf ).Then there exists
an open Q-nbd. of U of pf such that f(U) < (V). Since pf € cl(A), then U q A. This
implies, f(U) q f(A) = 7(V)q f(A) = f(p}) € el (f(A)= p € [ (cL,(A)) .

Thus cl(A) < £ (cl,(f(A))). That f(cl(A)) < cl,(f(A))

(ii) = (iii). By (ii) we have f(cl(f ' (B))) < cl, (ff (B)) c cl,(B) and so

c(f7(B)) < £ (el (B))
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(iii)= (iv). Let B be a fuzzy y-closed setin Y. Then ¢/, (B) = B . By (iii)

c(f7(B) < f'(cL,(B)= f'(B) which implies that cI(f™'(B))= f'(B).Thus
f 7' (B) is fuzzy closed set in X.

(iv) = (v) Let B be fuzzy y-open setin Y. Then B° is fuzzy y-closed setin Y.

Then by (iv) f~'(B¢) is fuzzy closed set in X. But f~'(B°) =(f"(B))° and hence
f~'(B) is fuzzy open set in X.

Corollary 3.4.6: If Y is y-regular space then all properties of theorem 3.6 are equivalent
Proof: By Theorem 3.4.6, we have (i) = (ii) = (iii) = (iv) = (v), so it is sufficient to
prove (v) = (i). Let p’ be a fuzzy point in X and V be a fuzzy open Q-neighborhood of
f( pf ). Since Y is fuzzy y-regular space, then V is fuzzy y-open set in Y. Therefore by
assumption f ' (V) is fuzzy open setin X. Also f(p? )qV =p? qf ' (V). Thus

U= f'(V) is an open Q-nbd. ofp;1 and f(U)= f(f(V))cV < #V). Hence f is
fuzzy y-continuous mapping.

Corollary 3.4.7: If y is open operation, then all the properties of theorem 3.4.6 are
equivalent.

Proof: By Theorem 3.4.6 (i) = (ii) = (iii) = (iv) = (v), so it is sufficient to prove that

(v) = (). Letp f be a fuzzy point in X and V be a fuzzy open g-neighborhood of f( p f ).
Since v is open operation, there exists a fuzzy y-open set A and f(p’)q A such that

A < (V). Again since A is fuzzy y-open set in Y, by our assumption, f~'(A) is fuzzy
open set in X. Also pf qf '(A)so that U = f'(A)is an open Q-neighbourhood of pf

and f(U)=f(f T(A))cAc 7(V) .This shows that f is fuzzy y-continuous mapping.
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3.5 Fuzzy y-compactness :

In this section, the notion of y-compactness in fuzzy setting is defined and
developed theory in this field. Then we have developed notions of fuzzy y -convergence
and y-accumulation of fuzzy filterbase and applied to characterize fuzzy y-compact.
Definition 3.5.1: Let (X,T)be a fuzzy topological space, and y be an operation on T. A
fuzzy filter base F in X is said to y-accumulates to p f in X if y(V)q A for every A € F
and every open Q-neighbourhood V of p f
Definition 3.5.2: A fuzzy filter base F in X is said to y-convergent to pf if for every open
Q-neighbourhood V of pf , there exists an A € F such that F < (V) and p f € cl,(B)
for every B € F.

Theorem 3.5.3: A fuzzy point p f in X is fuzzy y-cluster point of a filter base F iff
pf € cl,(B) foreachB € F.

Proof: 1t is straightforward. In facts it follows from the definition 3.5.1.
Theorem 3.5.4: Let (X,T) be a fuzzy topological space and y be an operation on T. Then

the followings hold:

(1) If a fuzzy filterbase F in X y-converges to p f in X, then F y-accumulates to pf
(2) If a fuzzy filterbase F in X is contained in a filterbase which y-accumulate to p f in X,
then F y-accumulate to p f

(3) If a maximal filterbase in X y-accumulates to p?, then it y-converges to p’

Proof:

(1) It follows from definition 3.5.2
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(2) Let H be a filter base such that F ¢ H and it y-accumulate to p?. Then we have
7(V)q A for every A € H and every open Q-neighbourhood V of p’. Since Fc H ,

then (V) q B for every B € F. This implies F also y-accumulate to pf .

(3) follows obiously.

Theorem 3.5.5: Let (X,T) be a fuzzy topological space and y be an operation on T. If a

filterbase F in X y-accumulates to p f, then there exists a fuzzy filterbase H in X such
that F < H and H fy-converges to pf.
Proof: Let the filterbase F y-accumulate to pf .Then pf € cl,(A), for every A€ F.

Hence for every open Q-nbd. U of p? and foreach A € F, y(U)gA which implies that
y(U)(NA#0_. Consider the set G = { y(U) | A: A€F andp:1 qUE€T}. Let

G,.G,eG. Then G,NG,=(ANA)NGU)NYU,))=ANGU,)NYU,)) for

everyAe F andU,,U, e N%(p’). Since y is regular, then there exists an open Q-nbd. W

A

of pf such that yW)cyU,)NyU,). Hence G NG, 2yW)NA . Let

G, =y(W)(NAe F. Then we have G, € G, NG, and hence G is fuzzy filter base in X.
Now the fuzzy set H ={Be I* :C < B for someC e G} is fuzzy filter generated by G

and y-converges to p f and Fc H.

Definition 3.5.6: Let (X, T ) be fts and y be a fuzzy operation on T. Then (X,T) is said to
be fuzzy y-compact if for every open cover {U, :ie A} of X, there exists a finite subset
A, of A suchthat U{yU,):ie A,}= 1,

Examples 3.5.7:

(1) If y is identity operation, then fuzzy y-compactness reduces to fuzzy compact [21].
(2) If y is closure operation, then fuzzy y-compactness reduces to fuzzy almost

compact [24]
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(3) If y is the interior-closure operation, then fuzzy g -compactness coincides with
fuzzy nearly compact [43]
Theorem 3.5.8: Every fuzzy compact space is fuzzy y-compact.

Proof: Let {V, :axe A} be fuzzy open cover of X. Since X is fuzzy compact, there is a
finite subset A, of A such that U{U,:ae A,}= 1, .Then by definition of 7,
U{yW,):ae A,}= 1, Thus X is fuzzy y-compact.

Remark 3.5.9: The converse of above theorem is not true as the example of an almost
compact but not compact space given by Di Concilio and Gerla [24].

Theorem 3.5.10: If fts (X,T) is fuzzy y-compact for some operation y on T such that
(X,T) is fuzzy y-regular, then (X,T) is fuzzy compact.

Proof: Let C ={U, :ie A} be an open cover of X. Since X is fuzzy y-regular, then for
each ie A, y(V,)cU,. Since V, is open set, therefore the set {V,:ie A} is an open
cover of X. Since (X,T) is fuzzy y-compact, there is a finite subset A, of A such that
U{y(V,)):ie A,) =1, . Therefore U{U, :ie A,) =1, and so X is fuzzy compact.
Theorem 3.5.11: Let (X,T) be fts and y be a fuzzy operation on T. Then the following
conditions are equivalent:

(1) (X,T) is fuzzy y-compact

(2) Each fuzzy filterbase in X y-accumulates to some fuzzy point of X.

(3) Each fuzzy maximal filterbase in X y-converges to some fuzzy point of X.

Proof: (1) = (2). Suppose that there exists a fuzzy filterbase F in X which does not y-

accumulate to any fuzzy point p f of X. Then there exists F, € F and an open Q-nbd. of
pf such that F_ is not quasi-coincident with (V). Since X is fuzzy y-compact and
the family C={V _:xe X} is open cover of X, there exists a finite subfamily

{V, :i=12,-n} of C such that UL, »(V,)=1, But F is filter base, so there is a
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subfamily {F, :i=12,--n} of Fsuchthat (1, F, #0, and consequently F, gy(V, )
for some me {1,2, ...,n} which is a contradiction. Hence (1) = (2).

(2) = (3). Let G be fuzzy maximal filterbase in X and F be any fuzzy fliltebase in X
which y-accumulates to some fuzzy point of X, say p f . Then G is also y-accumulates to
pf and by the 3.5.4(3), G y-converges to pf

(3) = (2). Since each filterbase is contained in a maximal filterbase in X, (3) obiviously
implies (2)

(2) = (1) Let C={U, :ie A} be an open cover of X such that U{y(U,):ie A,} #1,,
where A is finite subset of A. Let D denote the set of all sets of the form
N{(yU,)) :ie A,}. Since N (¥(U,))  #0,, D is fuzzy filterbase in X. and so by our
assumption, it fuzzy y-accumulates to some point p f in X. But p f is quasi-coincident
with some U € Cand so (U ))°e D. Thus U is an open Q-nbd. of pf such that
yU)(x)+(yU)) (x) # 1. It follows that p f is not a fuzzy y-accumulation point of D and

hence we have a contradiction.

We conclude this chapter with the following result on fuzzy y-continuous and

compactness.

Theorem 3.5.12: Let f be a mapping of a fts (X,7) into another fts (Y,T’), and y an
operation on7’. If (X,T) is fuzzy compact and f is fuzzy y-continuous, then f(X) is
fuzzy y-compact.

Proof: Let C={V,:ie I} be an open cover of f(X). By the fuzzy y-continuity, the set
D={U,eT: f(U,)cyV,)} for some V,e C} is open cover of X. Since X is fuzzy
compact, then X c U{U, :i=1,2---n} for some U,,U,---U, € D. For each {1, 2, ...n},
we can find V, € C such that f(U,) c y(V,). Therefore

FOOCfUW, i =12,-n) =Uf Ui =12, -0} UV, :i=12:-n}  and  so
f(X) is fuzzy y-compact.
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