2019

PHYSICS

(Major)

Paper : 5.4

(Electronics)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Answer the following questions briefly: 1×7=7
 - (a) In what respect an LED is different from photodiode?
 - (b) Which of the three transistor amplifier CB, CE and CC configurations is regarded as most stable one, in terms of stability factor?
 - (c) Name the diode, manufactured in such a way that its capacitance varies inversely with applied voltage.
 - (d) State why input and output terminals of RC coupled CE transistor amplifiers are connected with coupling capacitors (C_c) .

Sec.

- (e) What is the full form of CRO?
- (f) State what you understand by sequential circuits.
- (g) State the number of power supplies required at least for operation of an OP-AMP.
- 2. Give very short answers to any four of the following: 2×4=8
 - (a) In a half-wave rectifier, the input voltage is 20 sin 314t and the load resistance is 500 ohms. Considering negligible diode resistance, find peak and r.m.s. value of current.
 - (b) With reference to 8085 miroprocessor, state any two functions of its ALU.
 - (c) What is the value of lower cutoff frequency of an OP-AMP? Find the value of bandwidth if upper cutoff frequency of the OP-AMP is 10 MHz.
 - (d) In a CE transistor amplifier, $h_{fe} = 200$. What will be the maximum value of current gain it could achieve theoretically?

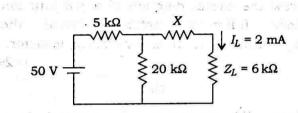
- (e) Draw the circuit diagram of an astable multivibrator.
- (f) Define critical frequency of an ionospheric layer.
- Draw the circuit diagram of a p-n junction diode full-wave rectifier. Derive the expression for its efficiency and ripple factor.

1+2+2=5

Or

Derive the expressions for current gain, voltage gain and input impedance of a CE amplifier using hybrid equivalent circuit.

2+2+1=5


4. Draw the circuit diagram of a transistor phase shift oscillator. Draw the equivalent circuit of the oscillator and find expression for the frequency of oscillation. 1+1+3=5

a to an and or so long and

A feedback amplifier having normal voltage gain 1000, input resistance $10 \text{ k}\Omega$ and output resistance $2 \text{ k}\Omega$ is subjected to negative voltage series feedback. If feedback ratio is 0.001, then find the modified values of (a) input resistance, (b) output resistance and (c) closed-loop voltage gain after the feedback.

5. Convert the following circuit into Thevenin's equivalent and calculate Thevenin's equivalent voltage and unknown impedance X if current flowing through the load is 2 mA:

1+2+2=5

6. Answer any *two* questions from the following: $5\times2=10$

Mai er las Semala er al Burgo. A ria alaug de affect

- (a) Draw the circuit diagram of an RC coupled CE amplifier. Derive the expression for voltage gain in the mid-frequency range from the equivalent circuit. Give reasons for elements neglected in the equivalent circuit.

 1+3+1=5
- (b) What is the need of stabilization of Q-point for operation of transistor? Write the expression for total collector current in terms of $I_{\rm B}$, $I_{\rm CO}$ and β . Define stability factor. 2+2+1=5

on hattaners of the Combiners to the

- (c) What are the major constituents of ionosphere? Name the different layers of ionosphere. What are the factors which determine the path of a radio wave in the ionosphere?
- (d) What are the characteristics of an ideal OP-AMP? Derive an expression for output voltage of a differential amplifier in terms of difference mode voltage gain (A_d) and common mode voltage gain (A_c) . 2+3=5
- 7. Answer any *two* questions from the following: 5×2=10
 - (a) (i) Define 'nible' and 'byte'.
- (ii) Add the binary numbers 1101·11 and 1001·01, and also find their difference using 2's complement method.
- (iii) Convert the decimal numbers
 75.875 and 25.25 into binary
 equivalent. 1+3+1=5

frequent test

you realize NAND and NOR gates using diode, resistance and transistor? Write truth tables.

5

(c) The AM wave given by the equation $v_{AM} = 50(1+0.8\cos6280t+0.6\cos12560t)$ $\cos(628\times10^4)t$

Calculate—

- (i) the radio frequency components each USB & LSB and their amplitude;
- (ii) the power of each sidebands if load resistance is 100 Ω;
- (iii) the composite modulation index.

2+2+1=5

- (d) State the fundamental differences in the operation of class-A, class-B and class-C power amplifiers. Show graphically the portion of the input cycle for which the collector current flows through the active device. Write which class of above amplifiers exhibits maximum theoretical efficiency. 2+2+1=5
- 8. Answer any two questions from the following:

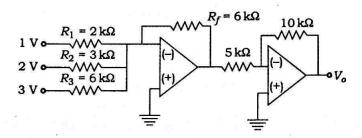
5×2=10

(a) An FM wave is represented by the equation

 $v_{\text{FM}} = 141 \sin (6.28 \times 10^5 t + 2 \sin 12560t)$ Calculate—

(i) the carrier and modulating frequencies;

20A/278


(Continued)

- (ii) the modulation index and maximum frequency deviation of the FM wave;
- (iii) the power dissipated in a $1 \text{ k}\Omega$ resistance. 2+2+1=5

5

5

(b) Find the value of output voltage of the OP-AMP (V_o) from the following circuit:

- (c) Show the working of S-R flip-flop with a suitable diagram. Give the truth table of the flip-flop constructed with NOR gates. Write the characteristic equation of SRFF.

 2+2+1=5
- (d) Write a short note on any one of the following:
 - (i) Maximum power transfer theorem
 - (ii) SSB transmission
 - (iii) Wien bridge oscillator

* * *