2019

PHYSICS

(Major)

Paper : 5.2

(Atomic Physics)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct option of any seven of the following: $1 \times 7 = 7$
 - (a) Which of the following lines mostly appears in the absorption spectra of hydrogen?
 - (i) Lyman
 - (ii) Paschen
 - (iii) Pfund
 - (iv) Brackett

- (b) Rutherford's α-particle scattering experiment gave experimental information about
 - (i) the charge of a-particle
 - (ii) the size of the atom
 - (iii) the size of the nucleus
 - (iv) None of the above
- (c) Which of the following transitions gives rise to most intense line?

(i)
$$\Delta L = -1$$
, $\Delta J = +1$

(ii)
$$\Delta L = -1$$
, $\Delta J = 0$

(iii)
$$\Delta L = -1$$
, $\Delta J = -1$

(iv)
$$\Delta L = +1$$
, $\Delta J = 0$

- (d) The value of Bohr magneton' is
 - (i) 0
 - (ii) 9.27×10^{-24} A-m
 - (iii) $9.27 \times 10^{-24} \text{ A-m}^2$
 - (iv) $4.63 \times 10^{-24} \text{ A-m}^2$

- (e) X-ray is produced when transition takes place
 - (i) in the innermost orbit
 - (ii) in the outermost orbit
 - (iii) in the nuclear transition
 - (iv) All of the above
- (f) Which of the following is not true about Raman scattering?
 - (i) Most of the Raman lines are strongly polarized
 - (ii) Raman spectrum is the characteristic of the scattering substance
 - (iii) Stokes lines have greater wavelength than the original line
 - (iv) Anti-Stokes lines are more intense than the Stokes lines
- (g) The maximum possible energy of electron in hydrogen atom is
 - (i) 13·6 eV
 - (ii) 13.6 eV
 - (iii) O eV
 - (iυ) 1 eV

- (h) Compton wavelength is given by

 - (i) $\frac{h}{m_0 c}$ (ii) $\frac{2h}{m_0 c}$

 - (iii) $\frac{3h}{m_0 c}$ (iv) $\frac{2h}{m_0 v}$
- 2. Answer any four of the following:

 $2 \times 4 = 8$

- The series limit wavelength of Balmer (a) series in hydrogen spectrum is 3646 Å. Calculate Rydberg constant for hydrogen atom.
- Calculate the two possible orientations (b) of spin vector S with respect to a magnetic field B.
- Why is ${}^4D_{1/2}$ term not split in a (c) magnetic field?
- Calculate the minimum voltage that (d) must be applied to an X-ray tube to produce X-ray photons of wavelength 0·1 Å.
- What is the distance of closest approach (e) when a 5.0 MeV proton approaches a gold nucleus?

3. Answer the following questions:

- (a) Write three prominent observations of Rutherford's α-particle scattering experiment. What is impact parameter? How does the scattering depend on the thickness of the foil?
- (b) Calculate the possible orientations of the total angular momentum vector J corresponding to j = 3/2 with respect to a magnetic field along z-axis.

Or

Write the values of quantum numbers l, s and j corresponding to each of the following one electron terms:

 $^{2}P_{1/2}$, $^{2}D_{3/2}$ and $^{2}S_{1/2}$

Is ${}^2D_{1/2}$ a possible term? Why? ${}_{3+1+1=5}$

(c) Describe quantum theory of Raman effect. How can one explain the existence of centre of symmetry of CO₂ molecule using Raman and infrared spectrum? 3+2=5

Or

What are continuous and characteristics X-rays? Why are X-rays used to study the crystal structure? What are K_{β} and M_{α} lines? 2+1+1+1=5

5

4. Answer the following questions:

(a) Explain space quantization and electron spin hypothesis. Describe, in brief, how Stern-Gerlach experiment explained the existence of electron spin. 4+4+2=10

Or

Derive an expression for the Larmor precessional frequency. What is its importance? Calculate the magnitude of spin magnetic dipole moment of an electron in terms of Bohr magneton.

5+2+3=10

(b) Discuss Sommerfeld's relativistic correction. What is fine structure constant? Explain the fine structure of H_{α} line with the help of Sommerfeld's theory. Draw the two possible electron orbits for n=2 according to Sommerfeld's theory. 4+1+3+2=10

Or

Describe the construction of Bainbridge's mass spectrograph with a clean diagram. Show that the radius r of the ion path is linearly proportional to the ion mass M for the same ionic charge q in Bainbridge's mass spectrograph. Explain how isotopes can be detected with the help of Aston's mass spectrograph. 3+4+3=10

(c) State and explain Moseley's law of X-rays. Show how it has been used in removing some of the defects in the periodic table. The K_α line from molybdenum has a wavelength of 0.7078 Å. Calculate the wavelength of K_α line of copper. Atomic numbers of molybdenum and copper are 42 and 29, respectively.

Or

Write explanatory notes on the following: 5+5=10

- (i) Rayleigh scattering and color of sky
- (ii) Pauli's exclusion principle

* * *