2019

PHYSICS

(Major)

Paper : 5.1

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP—A

(Mathematical Methods)

(Marks: 30)

1. Answer the following questions: $1\times4=4$

actions sisterary andgains to adjust

- (a) Define a simply connected region in complex plane.
 - (b) Find out the conjugate of a complex number 7+6i.

min - i

- Define a singular point of a (c) function. (d) Give the Euler's formula. 2. (a) State De Moivre's theorem. 2 Find the modulus and argument of (b) the complex number $\frac{1+2i}{1-(1-i)^2}$ policy in the pay that it must 3. (a) Examine whether the function $f(z) = e^z$ is an analytic function or 3 not. (b) Demonstrate a graphical representation of complex variable through
 - **4.** State and prove Cauchy's integral theorem.

Argand diagram.

Asiem Enforce.

2

5

5. Using Cauchy's integral formula, evaluate

$$\int_C \frac{z}{(z^2-3z+2)} dz$$

where C is the circle $|z-2| = \frac{1}{2}$.

6. (a) (i) Develop the Taylor series expansion and find the radius of convergent for ln z about $z_0 = 1.$

5

(ii) Evaluate $\oint_C \frac{dz}{z}$, where C is a circle of unit radius.

2

Show that (b) (i)

$$\int_{-\infty}^{\infty} \frac{dx}{1+x^2} = \pi$$

Give the Laurent series expansion (ii) for f(z).

GROUP-B

(Classical Mechanics)

(Marks: 30)

- 7. Answer the following questions/Choose the correct option:
 1×4=4
 - (a) What is cyclic or ignorable coordinate?
 - (b) What is a central force?
 - (c) A particle is constrained to move along the inner surface of a fixed hemispherical bowl. The number of degrees of freedom of the particle is
 - (i) one
 - (ii) two
 - (iii) three
 - (iv) six
 - (d) For a conservative system, the potential energy does not depend upon
 - (i) force
 - (ii) generalised coordinate
 - (iii) generalised velocity
 - (iv) All of the above

- **8.** Answer any *two* of the following questions: 2×2=4
 - (a) What do you understand by holonomic and non-holonomic constraints?
 - (b) Explain reduced mass in the context of two-body central force problem.
 - (c) What are generalised coordinates?
- **9.** Answer any *two* of the following questions: $3\times2=6$
 - (a) State Kepler's laws of planetary motion.

ear way a labor management

- (b) Show that Hamiltonian H is a constant of motion if the Lagrangian L is not an explicit function of time.
- (c) Show that a two-body central force problem can be reduced to one-body problem.

10. (a) The Lagrangian of a problem is

$$L = \frac{1}{2}m(\dot{r}^2 + r^2\dot{\theta}^2) + V(r)$$

Identify the cyclic coordinate and the corresponding conservation law for the problem.

Or

Show that for a particle moving under a central force, the total mechanical energy of the particle is conserved.

(b) Use Lagrange's equations to find the equation of motion of a compound pendulum which oscillates in a vertical plane about a fixed horizontal axis.

and or protect or any me was a

Establish the Hamiltonian and equations of motion of a simple pendulum.

5

 Derive Lagrange's equation of motion from Hamilton's principle for a conservative system.

7

Or

Derive Lagrange's equation of motion for a conservative system using D'Alembert's principle.
