will refinition must be or make a part on

CHEMISTRY

(Major)

Paper : 5.4

(Inorganic Chemistry)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct options for the following: A Property

 $1 \times 7 = 7$

Each of the following contains a six-(a) membered ring. Which molecule will have a six-fold (C_6) principal rotation axis?

missing of

- (i) Borazine
- (ii) Pyridine
 - (iii) Benzene
- (iv) S₆-molecule

- (b) The correct C—O bond order in the complexes $[Ni(CO)_4]$, $[Co(CO)_4]^-$ and $[Fe(CO)_4]^{2-}$ is
 - (i) $[Ni(CO)_4] < [Co(CO)_4]^- < [Fe(CO)_4]^{2-}$
 - (ii) $[Ni(CO)_4] > [Co(CO)_4]^- > [Fe(CO)_4]^{2-}$
 - (iii) $[Co(CO)_4]^- > [Fe(CO)_4]^{2-} > [Ni(CO)_4]$
 - (iv) $[Fe(CO)_4]^{2-} > [Co(CO)_4]^{-} > [Ni(CO)_4]$
- (c) The crystal field splitting energies for octahedral and tetrahedral complexes are related as

(i)
$$\Delta_t = \frac{1}{2}\Delta_o$$

Show the thirty of the property of the second setting $\Delta_t = \frac{1}{2}\Delta_o$

(ii)
$$\Delta_t = \frac{4}{9} \Delta_0$$

(iii)
$$\Delta_o = \frac{4}{9} \Delta_t$$

(iv)
$$\Delta_t = \frac{2}{5}\Delta_o$$

(d) If free heme in aqueous solution is exposed to dioxygen (O₂), it is converted almost immediately to a dimer

alde toemes shi essemi)

- (i) ferritin
- (ii) ferryl complex
- (iii) hematin
- (iv) oxyhaemoglobin oxyhaemoglobin oxyhaemoglobin

	The correct Cr—C	r bond order in the	
(e)	The correct	$CCH_3)_4(OH_2)_2$ 18	
	complex [Cr2(µ-02	$CCH_3)_4(OH_2)_2$ is	
	August 1	(14)	

(i) 2

2.5 (iv)

(iii) 3 Which of the following will have a centre of symmetry?

(i) [PtCl₄]²⁻

(ii) [CoCl₄]²⁻

(iii) [BF4]

(iv) [Ni(CO)4]

[Cr(H₂O)₆]Cl₃ has a magnetic moment of 3.83 BM. The correct distribution of (g) 3d-electron in the chromium of the complex is
(i) $(3d_{xy})^1(3d_{x^2-y^2})^1(3d_{yz})^1$

(ii) $(3d_{xy})^1 (3d_{z^2})^1 (3d_{yz})^1$ (iii) $(3d_{xy})^1 (3d_{yz})^1 (3d_{xz})^1$

(iv) $(3d_{x^2-y^2})^1(3d_{z^2})^1(3d_{xy})^1$ Burgasago mantingo

2. Answer the following very briefly:

Based on crystal field theory, show the d-orbital splitting pattern in square planar, and trigonal bipyramidal geometry.

- (b) Explain, why BF₃ molecule possesses an S₃ axis of improper rotation but NF₃ does not.
- (c) Identify the products A and B in the following reaction:

$$[Mn(CO)_5]^- + C_3H_5C1 \rightarrow A + C1^- \xrightarrow{hv} CO + I$$

- (d) For Mn³⁺ ions, the electron pairing energy P is $28000 \, \mathrm{cm}^{-1}$. Δ_o values for complexes $[\mathrm{Mn}(\mathrm{H_2O})_6]^{3+}$ and $[\mathrm{Mn}(\mathrm{CN})_6]^{3-}$ are $15800 \, \mathrm{cm}^{-1}$ and $38500 \, \mathrm{cm}^{-1}$ respectively. Write the electronic arrangement of Mn³⁺ in terms of t_{2g}^x and e_g^y .
- 3. Answer any three of the following short answer-type questions: 5×3=
 - (a) What are symmetry elements and symmetry operations? Assign the symmetry elements present in (i) a $d_{x^2-y^2}$ orbital, (ii) trans-N₂F₂ and (iii) F₂C=O.
 - (b) Discuss the Dewar-Chatt-Duncanson theory of bonding in metal olefin complexes.

(c) (i) Discuss the factors which influence

the magnitude of orbital splitting

1.77.18	energy Δ in a complex.	3
	(ii) Write the electronic arrangement in terms of e^x and t_2^y for tetrahedral	
13 173	complex [FeCl ₄] ²⁻ . Also find the	
May h	spin only magnetic moment value.	2
(d)	Discuss the mechanism of formation of hematin a μ -oxodimer, when free heme in aqueous medium is exposed to	
* 114.	dioxygen.	5
A spine	(i) Explain the basis of 18-electron rule for octahedral organic complexes.	3
	(ii) Verify the EAN rule for the organometallic compounds [Mn(η³-C ₃ H ₅)(CO) ₄] and	
info P	$[Cr(\eta^5-C_5H_5)(\eta^6-C_6H_6)]$	2
ques	wer any <i>three</i> of the following essay-type stions:	30
	(i) CH_4 molecule does not have a four- fold axis of rotation (C_4) but it does have an S_4 axis of improper rotation. Discuss the statement	3
20A/ 282	with a proper diagram. (Turn Ove	
1011		

k dintang kital di kacamatan

- (ii) What symmetry elements do BCl₃ and PCl₃ have in common? Also mention the point groups to which these molecules belong.
- (iii) N_2 has molecular orbital rather similar to those of CO. Would you expect N_2 to be a stronger or weaker π -acceptor than CO? Explain.
 - (b) Discuss the catalytic cycle of hydroformylation reaction of alkenes by cobalt carbonyl catalyst. An increase in carbon monoxide (CO) partial pressure decreases the rate of cobalt catalyzed hydroformylation of 1-pentene. Suggest an interpretation of this observation.

6+4=1

(c) Give a brief description of molecular orbital theory as applied to coordination compounds. Construct a molecular orbital energy level diagram for an octahedral complex involving metalligand sigma (σ) bonds only. Write the molecular electronic configuration of the complex [Co(NH₃)₆]³⁺. 5+4+1=10

(d)	(i) -	Discuss the physiology of haemoglobin and myoglobin. What do you mean by cooperativity binding of dioxygen with Hb?	5
	(ii)	How can you predict z-out and z-in distortion in an octahedral complex?	1
	(iii)	Why are transition metal aryls more stable than transition metal alkyls?	2
	(iv)	Write the IUPAC names for $[(Co)_3(\eta^5-C_5H_5)(\eta^3-C_5H_5)W]$ and $[Ni(\eta^3-C_3H_5)_2]$.	2
(e)	(i)	What do you mean by normal and inverse spinels? With the help of CFSE calculation, verify the spinel nature of Ni[Fe ₂]O ₄ and [Co ₃ O ₄].	5
	(ii)	Comment and discuss infrared spectra of $[V(CO)_6]^-$ and $[Cr(CO)_6]$.	
		Show absorptions at 1859 cm ⁻¹ and 1981 cm ⁻¹ respectively assigned to v _{CO} and 460 cm ⁻¹ and	
		441 cm ⁻¹ assigned to v _{MC} .	5