3 (Sem-6) MAT M 2

levroini ast as f fust - L stepped (5)

MATHEMATICS

(Major)

edi neswied qi Paper: 6.2 edi evil 0

(Numerical Analysis)

Full Marks: 60 sinW (c)

Time: Three hours

The figures in the margin indicate full marks for the questions.

in x = 0.3941 where appointe error is

- 1. Answer the following questions: $1 \times 7 = 7$
 - (a) If $\pi = \frac{22}{7}$ is approximated as 3.14, find the relative error and relative percentage error.
 - (b) Define 'absolute error'. Signal
- (c) Find the difference $\sqrt{2.01} \sqrt{2}$, correct to three significant figures.

- (d) If m and n are positive integers, then show that $\Delta^m \Delta^n f(x) = \Delta^{m+n} f(x)$.
 - (e) Evaluate $\Delta^n \left(\frac{1}{x}\right)$, with 1 as the interval of differencing.
 - (f) Give the relationship between the operator ∆ and the differential operator D.
 - (g) Write the general quadrature formula in numerical integration.
- 2. Answer the following questions: 2×4=8

Time: Three hours

- (a) Find the number of significant figures in x = 0.3941 whose absolute error is 0.25×10^{-2} . parameter a name of 0.25×10^{-2} .
- by Given $u_0 = 3$, $u_1 = 12$, $u_2 = 81$, $u_3 = 200$, eviscio $u_4 = 100$ and $u_5 = 8$, find $\Delta^5 u_0$.
 - (c) What is numerical differentiation? Explain briefly its importance.
- (d) Derive trapezoidal rule from Newton-Cotes quadrature formula.

- Answer the following questions: 5×3=15 3.
 - (a) Find the relative error for evaluation of $u=x_1x_2$ with $x_1=4.51$, $x_2=8.32$ having absolute errors $\Delta x_1 = 0.01$ in x_1 and $\Delta x_2 = 0.01 \text{ in } x_2.$
 - (b) Using the method of separation of symbols, prove the following:

explains
$$(u_1 - u_0) - x(u_2 - u_1) + x^2(u_3 - u_2) - \dots$$

explains $\frac{\Delta u_0}{1 + x} - x \frac{\Delta^2 u_0}{(1 + x)^2} + x^2 \frac{\Delta^3 u_0}{(1 + x)^3} - \dots$
 $\frac{\Delta u_0}{1 + x} = \frac{\Delta u_0}$

Find the function whose first difference is $9x^2 + 11x + 5$.

(c) A second degree polynomial passes through the points (1, -1), (2, -1), (3, 1) and (4, 5). Find the polynomial.

Using Lagrange's interpolation formula, find the form of the function given by:

011230 370
$$x$$
 : 23 08 2 + 21 20 -1 0010 0 : y $f(x)$: 3 12 15 -21

- 4. 3. Answer any one part : and and anward.
 - (a) (i) Apply Stirling's formula to find a polynomial of degree 4 which takes bate is the following tabular values:

struccia prove the city but t

(ii) Using Newton's divided difference formula, construct

interpolating polynomial and hence compute $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x=5using the following data:

 $x: 0 \ 2^{-3} \ 4^{-3} \ 7^{-9}$ y: 4 26 58 112 466 922 sessed laimonying rough through 5+5=10 ([-, 1], ([-, 1]) states of figure 5+5=10

- (b) (i) Use Bessel's formula to find , his much mark y(0.12) from the following data:
- x : 0 0.05 0.1 0.15 0.2 0.25 y : 0 0·10017 0·20134 0·30452 0·41075 0·52110 /w : 3 L2 L5 -21

(3, 1) and (4, 5). Find the polynomeal,

O) II CUSING LEGISTIFIC STRUCTS III (C) bis (ii) Find the value of $\int log_{10}x dx$, taking 8 subintervals, by 01 grapezoidal rule. 15 1 0 - (-14

5. To Answer any one part : 16 barie (ii)

(a) (i) In a machine a slider moves along a fixed straight rod. Its distance x cms along the rod is given below for various values of time t 5+5=10 seconds. Find the velocity and acceleration of the slider when

(a) (i) Derive the rate ∞ convergence of t(sec): 0 0.1 0.0.2 11 0.3 10.0.4 1 0.5 0.6 x(cm): 30·13 31·62 32·87 33·64 33·95 33·81 33·24

fiii Compute the root of $e^x - 3x = 0$. gray (ii) The velocity v (km/min) of a car owl of loan which starts from rest, is given at 01=3+3 fixed intervals of time t (min) as (b) (i) Using Newton: awollon method,

 $t_{.0} := 2 - 4 - 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20$ v : 10 18 25 29 32 20 11 5 2

> Estimate approximately the distance covered in 20 minutes. 5+5=10

(b) (i) Using Lagrange's formula and the following table, find f'(3) and

f'(4): f10 27

(ii) Find an approximate value of log_e 7 using Simpson's rule to the

a fixed $\frac{x}{x}$ $\frac{dx}{dx}$, read its distance x cans alo $\frac{dx}{dx}$. Siven below for various values of time t seconds. Find the velocity and

5+5=10

6. Answer any one part : Trefains

(i) Derive the rate of convergence of and the Secant method. o () (cm): 3043 3162 3267 3364 3395 3381 3324

(ii) Compute the root of $e^x - 3x = 0$, 760 8 to (susing bisection method, lying between 1.5 and 1.6, correct to two ss (nim) 1 decimal places. 5+5=10

(b) (i) Using Newton-Raphson method, of 81 d find the root of $x^4-x-10=0$, which is nearer to x=2, correct to ponsisib three decimal places. nited covered in 20 minutes. 5+5=10

(ii) Find an approximate root of the equation $x^3 + x - 1 = 0$ near x = 1, by the Regula-Falsi method, correct to two decimal places.

5+5=10

NATIONAL PROPERTY AND ADMINISTRATION OF THE PARTY OF THE