2018

MATHEMATICS

(Major)

Paper: 3.2

(Linear Algebra and Vector)

Full Marks: 80

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Linear Algebra)

(Marks: 40)

- 1. Answer the following as directed: 1×7=7
 - (a) Describe geometrically the linear dependence of any two vectors u and v in the vector space R^3 .
 - (b) Prove that if two vectors in a vector space V over the field F are linearly dependent, then one of them is a scalar multiple of the other.

(Turn Over)

(c) Let U and W be the following subspaces of R³:

$$U=\{(a, b, c): a=b=c\}$$
 and $W=\{(0, b, c)\}$
Clearly any $v=(a, b, c) \in U \cap W \Rightarrow a=0$,
 $b=0$, $c=0 \Rightarrow U \cap W = \{0\}$. Observing
this, choose the correct option:

- (i) $R^3 = U \oplus W$
- (ii) $R^3 \neq U \oplus W$
- (d) If U and V be two vector spaces over the same field F with $\dim U = m$ and $\dim V = n$, then the set $\operatorname{Hom}(U, V)$ of all linear transformations from U to V is a vector space of dimension
 - (i) m+n-1
 - (ii) 1 (m+n)
 - (iii) mn
 - (iv) m+n

(Choose the correct option)

- (e) If T is a linear operator, then the following are equivalent:
 - (i) A scalar λ is an eigenvalue of T.
 - (ii) The linear operator $\lambda I T$ is singular. (Write true or false)

(f) Find the minimal polynomial m(t) of the following matrix:

$$A = \begin{bmatrix} 5 & 1 \\ 3 & 7 \end{bmatrix}$$

- (g) If λ is an eigenvalue of a linear operator (matrix) A, what is meant by the geometric multiplicity of λ ?
- 2. Answer the following questions: 2×4=8
 - (a) Give an example of an infinitedimensional vector space V with a subspace W such that the quotient space V/W is a finite-dimensional vector space.
 - (b) Suppose a linear transformation $T: V \to U$ is one-to-one and onto. Show that the inverse mapping $T^{-1}: U \to V$ is also a linear transformation.
 - (c) Consider the two bases of the vector space $R^2(R)$:
 - $B_1 = \{(1, 2), (3, 5)\}$ and $B_2 = \{(1, -1), (1, -2)\}$ Find the change-of-basis matrix M from B_1 to the 'new' basis B_2 .
 - (d) If λ be an eigenvalue of a linear operator $T: V \to V$, then prove that the set E_{λ} of all eigenvectors belonging to λ is a subspace of V.

- 3. Answer any one part :
 - (a) Let V_1 and V_2 be vector spaces over the same field F and T be a linear transformation from V_1 into V_2 . Show that if V_1 is finite dimensional, then rank (T) + nullity (T) = dim V_1 .
 - (b) Define kernel of a linear transformation. Find the range, rank, null space and nullity of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that $T(x_1, x_2) = (x_1, x_1 + x_2, x_2)$.
- **4.** Answer the following questions: $10 \times 2 = 20$
 - (a) When is a subspace of a vector space V said to be spanned by a subset X of V? If U be a vector space which is spanned by a finite set of vectors $u_1, u_2, ..., u_m$ in U, then prove that any linearly independent set of vectors in U is finite and contains no more than m elements.

 1+9=10

Or

If W_1 and W_2 are finite-dimensional subspaces of a vector space V, then prove that $W_1 + W_2$ is also finite-dimensional and

 $\dim W_1 + \dim W_2 = \dim(W_1 \cap W_2) + \dim(W_1 + W_2)$ 10

A9/79

(Continued)

- (b) (i) Let V be a vector space over the field F and T be a linear operator on V. Define a characteristic value of T, a characteristic vector of T and the characteristic space associated with a characteristic value of T.
 - (ii) If T_1 and T_2 be linear operators on R^2 and C^2 respectively which are represented in the standard ordered basis by the matrix

$$A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

then find characteristic polynomials and characteristic values (if possible) for T_i (or for A), i = 1, 2.

(iii) Prove that similar matrices have the same characteristic polynomial.

3+3+4=10

Or

State the Cayley-Hamilton theorem and define the minimal polynomial of a matrix (linear operator) A. Find the minimal polynomial of

$$A = \begin{bmatrix} 2 & 2 & -5 \\ 3 & 7 & -15 \\ 1 & 2 & -4 \end{bmatrix}$$
 1+1+8=10

GROUP-B

(Vector)

(Marks: 40)

5. Answer the following:

 $1 \times 3 = 3$

- (a) Prove that the value of a scalar triple product, if two of its vectors are parallel, is zero.
- (b) Prove that $\vec{a} \cdot \vec{b} \times \vec{c} = \vec{a} \times \vec{b} \cdot \vec{c}$.
- (c) If \vec{a} and \vec{b} lie in a plane normal to the plane containing \vec{c} and \vec{d} , then show that

$$(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = 0$$

6. Find the volume of the parallelepiped whose edges are represented by

$$\vec{a} = 2\vec{i} - 3\vec{j} + 4\vec{k}, \quad \vec{b} = \vec{i} + 2\vec{j} - \vec{k}$$

$$\vec{c} = 3\vec{i} - \vec{j} + 2\vec{k}$$

7. Answer the following questions:

5×3=15

2

(a) If \vec{a} , \vec{b} , \vec{c} and \vec{a}' , \vec{b}' , \vec{c}' are reciprocal systems of vectors, then prove that

$$\vec{a}' \times \vec{b}' + \vec{b}' \times \vec{c}' + \vec{c}' \times \vec{a}' = \frac{\vec{a} + \vec{b} + \vec{c}}{[\vec{a}\vec{b}\vec{c}]}$$

(b) (i) If
$$\vec{r} = \vec{a} \sin \omega t + \vec{b} \cos \omega t + \frac{\vec{c}t}{\omega^2} \sin \omega t$$
,

then prove that

$$\frac{d^2\vec{r}}{dt^2} + \omega^2 \vec{r} = \frac{2\vec{c}}{\omega} \cos \omega t$$

(ii) Give the geometrical interpretation of

$$\vec{r} \times \frac{d\vec{r}}{dt} = \vec{0}$$
 4+1=5

(c) Prove that

$$\operatorname{div}(\overrightarrow{A} \times \overrightarrow{B}) = \overrightarrow{B} \cdot \operatorname{curl} \overrightarrow{A} - \overrightarrow{A} \cdot \operatorname{curl} \overrightarrow{B}$$
 5

Or

When is a vector \overrightarrow{f} said to be irrotational? Find the constants a, b, c so that the vector

$$\vec{f} = (x+2y+az)\vec{i} + (bx-3y-z)\vec{j} + (4x+cy+2z)\vec{k}$$
is irrotational. 1+4=5

- 8. Answer the following questions: 10×2=20
 - (a) (i) If $\vec{a} = \sin \theta \vec{i} + \cos \theta \vec{j} + \theta \vec{k}$ $\vec{b} = \cos \theta \vec{i} - \sin \theta \vec{j} - 3 \vec{k}$ $\vec{c} = 2 \vec{i} + 3 \vec{j} - 3 \vec{k}$ find $\frac{d}{d\theta} \{ \vec{a} \times (\vec{b} \times \vec{c}) \}$ at $\theta = \frac{\pi}{2}$.

(Turn Over)

(ii) Show that if \vec{a} , \vec{b} , \vec{c} are constant vectors, then $\vec{r} = \vec{a}t^2 + \vec{b}t + \vec{c}$ is the path of a particle moving with constant acceleration. 7+3=10

Or

- (i) Prove that the necessary and sufficient condition for a vector $\vec{v}(t)$ to be constant is that $\frac{d\vec{v}}{dt} = \vec{0}$.
- (ii) If $\vec{r} \times d\vec{r} = \vec{0}$, show that $\hat{r} = \text{constant}$.
- (b) If $\vec{F} = (3x^2 + 6y)\vec{i} 14yz\vec{j} + 20xz^2\vec{k},$

evaluate $\int_{C} \vec{F} \cdot d\vec{r}$, where C is the line

curve consisting of the straight lines from (0, 0, 0) to (1, 0, 0), then to (1, 1, 0) and then to (1, 1, 1).

Or

Evaluate $\iiint_{V} \vec{F} dV$ where $\vec{F} = x\vec{i} + y\vec{j} + z\vec{k}$

and V is the region bounded by the surfaces x = 0, x = 2, y = 0, y = 6, z = 4 and $z = x^2$.

10

10