2018

COMPUTER SCIENCE

(Major)

Paper : 3.2

(Computer Organization and Architecture)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option:

- $1\times7=7$
- (a) In case of zero-address instruction method, the operands are stored in
 - (i) registers
 - (ii) accumulators
 - (iii) push-down stack
 - (iv) cache

- (b) Which method of representation of numbers occupies large amount of memory than others?
 - (i) Sign magnitude
 - (ii) 1's complement
 - (iii) 2's complement
 - (iv) All of the above occupies same amount of memory
- (c) The main virtue for using single bus structure is
 - (i) fast data transfer
 - (ii) error-free data transfer
 - (iii) cost-effective connectivity and ease of attaching peripheral devices
 - (iv) None of the above
- (d) The instruction fetch ends with
 - (i) placing the data from the address in MAR to MDR
 - (ii) placing the address of the data into MAR
 - (iii) completing the execution of the data and placing its storage address into MAR
 - (iv) decoding the data in MDR and placing it in IR

(e)	The small extremely fast RAMs are called as
	(i) cache
	(ii) heaps
	(iii) accumulators
	(iν) stacks
(f)	A block of successive memory location that is accessible on a last-in, first-out basis is called
mary Ç	(i) stack (ii) register
1,42	(iii) program counter
	(iv) accumulator
(g)	A microprogram is a microinstruction program which controls (i) input devices
in in History	(ii) output devices
2,00	(iii) functions of a CPU of peripheral

controller of a computer

(iv) None of the above

2. Answer the following questions:

 $2 \times 4 = 8$

- (a) What is addressing mode?
- (b) Represent (12.5) in 32-bit normalized floating-point format.
- (c) Write two differences between SRAM an DRAM.
- (d) What are two basic tasks performed by microprogrammed control unit?
- 3. Answer any three of the following questions:
 5×3=15
 - (a) Explain the functions of stack pointer and subroutine.
 - (b) What do you mean by micro-operation? Give brief introductions of different types of micro-operation.
 - (c) What is the function of a status register? What are the four-status register's flags? Write their functions.
 - (d) Write a short note on DMA.

(e) A computer has a main memory of size 16 megabytes and it is byteaddressable. The main memory is divided into the block of size 4 bytes. It also employs a cache memory of size 64 kilobytes. What will be the size of the tag field (in bits) if direct mapping is used?

4. Answer any *three* of the following questions: 10×3=30

- (a) Give brief descriptions of the functional units of a computer with the help of a diagram.
- (b) Design an 8-bit ALU. Also explain about how operations are performed in an ALU.
- (c) Briefly explain program-controlled I/O and interrupt-driven I/O techniques.
- (d) What is an interrupt? How interrupts are enabled and disabled by a program? Briefly explain any two schemes used to handle interrupts from multiple sources.
- (e) Explain any two mapping functions of cache memory.