2018

COMPUTER SCIENCE

(Major)

Paper: 3.1

(Data Structure and Algorithm)

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Define the following with example: 1×7=7
 - (a) Abstract data type (ADT)
 - (b) Stack
 - (c) Internal sorting
 - (d) Binary search tree
 - (e) Linear data structure
 - (f) Algorithm and flowchart
 - (g) Height of a binary tree
- 2. Answer the following questions: 2×4=8
 - (a) What are the advantages of linked lists over arrays?
 - (b) What is queue? How do you check whether a queue is empty or full?

(c) Evaluate the following postfix expression using stack:

- (d) Describe how the elements in a twodimensional array are stored in memory.
- **3.** Answer any *three* of the following questions: $5 \times 3 = 15$
 - (a) Write a function in C language for implementing binary search technique in an array. What is the main drawback of this searching technique?
 - (b) What is queue? Write briefly on two applications of each stack and queue in computer.
 - (c) What is sorting? What are its different types? Sort the following list using bubble sort:

-1 15 0 10 25 5

- (d) Write a function in C language for traversing a binary tree in Inorder. Use a suitable data structure.
- (e) Write the algorithm of linear search technique. What is its time complexity? How is it different from binary search technique?

- **4.** Answer any *three* of the following questions: $10 \times 3 = 30$
 - (a) Write a C program to implement a stack using array. Write functions for push and pop operations on a stack. 6+4=10
 - (b) Write an algorithm or a computer program in C for implementing any one of the following sorting techniques:
 - (i) Quicksort algorithm
 - (ii) Merge sort algorithm
 - (c) Define linked list. What are its different categories? Write C functions or algorithms to implement the following:
 - (i) Insertion of a node into a singlelinked list at beginning
 - (ii) Insertion of a node into a singlelinked list at the end 2+8=10
 - (d) Define time and space complexity of an algorithm. Write an algorithm or a computer program in C for applying DFS on a binary tree.

(e) Give algorithms for preorder and postorder traversal of a binary tree. A binary tree T has 9 nodes. The inorder and preorder traversals of T yield the following sequences of nodes:

Inorder: E A C K F H D B G
Preorder: F A E K C D H G B

Draw the tree. 4+6=10

- (f) Write short notes on any two of the following: 5×2=10
 - (i) BFS (Breadth First Search)
 - (ii) Postfix expression using stack
 - (iii) Time complexity of selection sort technique
 - (iv) Heap sort technique
